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Abstract -Determining the exact timing of cardiac events,
represented by the first (S1) and second  (S2) sounds, from the
PCG signals (phonocardiogram), represents a great challenge,
specially in pathological cases. A system that allows this kind of
detection could be used to synchronize several important
biomedical devices and diagnosis techniques, such as intraaortic
balloons (IABP) and synchronous images of Ultrasound,
Magnetic Resonance and Computerized Tomography. This work
presents a wavelet-based technique for S1 and S2 detection in
PCG signals, that is able to perform a good detection in both
normal and abnormal cases. It will be shown the criterion of
choosing the most suitable wavelet from a set of classical ones, as
well as the principles of the final detection method. The results in
the analysis of 756 cardiac cycles, from 19 subjects, including
normal and abnormal ones present an error ratio of 0.8%, point
out to the efficiency of the proposed method.

Keywords - Wavelet Transform, Cardiac Sounds,
Phonocardiogram, Eletrocardiogram.

I. INTRODUCTION

The study of Phonocardiogram (PCG) and
Eletrocardiogram (ECG) signals, supply relevant information
about the heart functioning. The literature has shown that
many authors aimed to determine the exact timing of cardiac
events from PCG signals [2][6]. Such methods could be used,
e.g., in the synchronism of IABP, replacing the normally used
ECG signals, considering that PCG signals are directly related
to the mechanical events of the heart and ECG is related to
the electrical activity of the heart. Despite the amount of
published papers concerning with the detection of PCG
timing, most of them only present good results in normal
cases, showing great timing errors in cases where the real
necessity of IABP would be indicated, i.e., in pathological
subjects.

This work deals with developing an objective technique
that allows the correct identification of S1 and S2 in the PCG
signals, even in pathological cases, where systolic and
diastolic murmurs difficult the detection of such events. The
proposed technique is based on the Wavelet Transform (WT)
time-frequency analysis, due to its good performance in
analyzing non-stationary signals , the type of signal derived
from the closing/opening of heart valves [3][4][6].

It will be shown that the proposed method results in a very
precise timing of PCG signals and, as mentioned before, the
final technique presents relevancy not only in synchronizing
IABP, but also in synchronized imaging techniques. 1
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II. METHODOLOGY

In this section a brief review of the cardiac sounds genesis
and WT will be described, as well as the adopted criterion to
choose the best mother wavelet from a set of classical wavelet
families and the description of the proposed technique.

A. Cardiac Sounds

The most important cardiac sounds, S1 and S2, are
generated by sudden distention of the valves leaflets or by
acceleration of blood mass in the moment of ventricular
contraction. Their irradiation through the thorax surface is
governed by the site of its origin and by the original intensity
of the signal.

Normal sounds that are generated by the left heart are
generally strong and can be detected in all the precordium.
Sounds originated in the right heart are strictly limited to the
left external border, between second and third intercostal
spaces[5]. Considering these facts, it is clear that PCG are
non-stationary signals and that they must be analyzed by a
time-frequency method, that in the present case is the WT [3].

B. Wavelet Transform

The WT has been used in many knowledge fields, ranging
from Communications to Biology [4]. Due to its good
performance in the analysis of signals that present non-
stationary characteristics, they have become a powerful
alternative when compared to the traditional Fourier
Transform (FT).

The classical FT decomposes a signal, in time domain,
using a base of orthogonal sinusoidal functions. The WT, by
the other hand, presents a decomposition base whose
constituents are obtained through expansions, contractions
and shifts of a same basic function, called mother wavelet,
that can be selected according to the analyzed signal [3]. For
the dyadic case, the mother wavelet must satisfy (1), that
correlates it with the so-called scaling function, that must
satisfy (2)
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where  j, k Ζ∈ , h0 and h1 are coefficients associated with the
impulsive response of a low-pass and high-pass FIR (Finite
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Impulse Response) filters, respectively. Thus, the WT can
also be performed by a filter-bank tree approach, as illustrated
in Fig. 1[3].
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Fig. 1. Block diagram of the filter-bank tree. The h0 and h1 are the impulsive
response of the FIR filters and aj,k and bj,k the approximation and detail
coefficients, respectively.

By the application of the signal throughout a filter-bank,
represented by h0 and h1, are obtained the coefficients aj,k and
bj,k, that represent the approximation and detail coefficients  of
the original signal at a level j [3], respectively. The signals at
the output of the high-pass filters will the called detail signals
in the context of the present work.

 C. Choosing the Wavelet Transform

As mentioned before, differently from FT, WT has several
possible bases, resulting from several mother wavelets. Thus,
it is necessary to choose the most appropriated one to the
analysis of a particular signal. The "best" base would be the
one that was able to represent the original signal with a
smaller number of significant coefficients aj,k and bj,k. Based
on this principle, the criterion to determinate the most suitable
mother wavelet to analyze PCG signals is based on the
comparison among normalized energies of the detail
coefficients that were obtained from the set of classical
wavelets. The most suitable wavelet would be the one that
presents the greater energy concentration in the smaller
number of coefficients, indicating its characteristic of
representing the signal with optimized coefficients. The
procedure also indicates which detail levels, bj,k., are the most
significant for each tested wavelet. In the comparison
procedure, the energy of the detail coefficients was
normalized by the signal energy in order to better compare the
various candidate wavelets.

D. Detection of S1 and S2 Based on Detail Signals

Since the most suitable wavelet and its most significant
detail levels, bj,k, have been selected, an heuristic technique
for  detection of the constituents of the PCG signal, S1 and
S2, was designed. The technique is based on the energy of the
most significant detail signals and in the presumption that the
detection of S2 can only occur, at least, 140ms after the
detection of S1. The block diagram of Fig. 2 describes the
complete detection method.

One can see in Fig.2 that the signal detection to the S1
event, det1, is generated by the comparison between the
compounded energy signal det1'. The later signal is obtained
multiplying the energy signals e4, e5 and e6 (energy signals

derived from the detail signals b4, b5 and b6, respectively)

and a fraction (determined by the constant 1k ) of the adaptive

level obtained from the temporal average of the energies e4,
e5 and e6.

The signal detection to the S2 event, det2, is reached by
the information of the compounded energy det2’. This signal
is obtained from the energy signals e3 and e4; the logical
temporal gate of 140ms (which is generated after the trailing
edge of det1) and a fraction (derived from the constant 2k ) of

the same adaptive level used in the detection of  det1.
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Fig. 2.  Block diagram of the proposed method for detection of the S1 and S2
in  PCG signals.

E. Materials

Nineteen volunteers (10 normal and 9 abnormal)
participated in the data acquisition, that was performed in the
Hypertension Division of the National Institute of Cardiology
Laranjeiras, Rio de Janeiro, Brazil. The PCG signals have
been acquired with a piezoelectric contact transducer (HP
21050  A/B) with flat frequency response in the range of 0.2-
2000Hz. Although the proposed methodology does not use
the ECG signal, this signal was also acquired in all volunteers
in order to supply a reference signal to test the new technique.
It is known that S1 must occur after the QRS complex and
that S2 must follows the T-wave of the ECG signal [5].

The signals have been recorded in a PC microcomputer
(Pentium 200MHz) equipped with a National Instruments
DAQ board (AT-MIO-16) 12 bit accuracy and sampling
frequency of 2000Hz. A specific electronic circuit was
designed to signal conditioning before its acquisition by the
DAQ board.

A cardiologist of the hospital that also placed the PCG
transducer and ECG electrodes has determined the PCG
acquisition sites. The 9 abnormal volunteers presented
different types of heart diseases, being the principals: aortic
insufficiency (AI), aortic stenoses (AS) and mitral
insufficiency (MI). From the 19 volunteers, 756 cycles were
used to evaluate the performance of the proposed method.

det1’

det2’
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III. RESULTS

The classical wavelets tested as candidates to the most
suitable wavelet to analyze the PCG signals were the
Daubechies (4 to 19), Meyer and Morlet. Part of the obtained
results in this searching process is represented in the Table I.
In this case, the analyzed PCG signal was a normal one. It can
be observed that the Daubechies-5 presents the best
concentration of energy in the detail coefficients b3, b4, b5
and b6. It can be also seen that among all the coefficients bj,k,
b4 shows the highest energetic value, representing about 81%
of the total energy of the analyzed PCG signal. Thus,
considering the adopted criterion, the Daubechies-5 wavelet
was select as the most suitable to the analysis of the acquired
PCG signals.

TABLE I
NORMALIZED ENERGY OF COEFFICIENTS b0 TO b9 FOR SOME DAUBECHIES

WAVELET TESTED AS CANDIDATES TO THE MOST SUITABLE WAVELET. THE MNEMONIC
Dbi STANDS i-th CLASS OF DAUBECHIE'S WAVELET AND bj ITS j-th DETAIL
COEFFICIENTS.

Daubechie’s Wavelets

bj Db4 Db5 Db7 Db8 Db9

b9 0.0000 0.0000 0.0000 0.0000 0.0000
b8 0.0001 0.0001 0.0001 0.0001 0.0001
b7 0.0016 0.0014 0.0010 0.0009 0.0009
b6 0.0279 0.0334 0.0171 0.0282 0.0278
b5 0.5074 0.0759 0.5880 0.2030 0.1264
b4 0.3620 0.8064 0.2630 0.6692 0.7449
b3 0.0789 0.0760 0.1172 0.0824 0.0939
b2 0.0207 0.0066 0.0132 0.0158 0.0059
b1 0.0013 0.0001 0.0004 0.0004 0.0001
b0 0.0001 0.0000 0.0000 0.0000 0.0000

Db10 Db11 Db13 Db14 Db18
b9 0.0000 0.0000 0.0000 0.0000 0.0000
b8 0.0001 0.0001 0.0001 0.0001 0.0000
b7 0.0009 0.0008 0.0007 0.0008 0.0008
b6 0.0130 0.0284 0.0118 0.0288 0.0212
b5 0.5284 0.3988 0.3423 0.5214 0.3877
b4 0.3350 0.4518 0.5387 0.3301 0.4731
b3 0.1194 0.1083 0.0999 0.1147 0.1125
b2 0.0032 0.0117 0.0064 0.0040 0.0046
b1 0.0000 0.0002 0.0002 0.0000 0.0000
b0 0.0000 0.0000 0.0000 0.0000 0.0000

Fig. 3 shows an example of the method described by the
block diagram of Fig. 2 for a normal PCG signal, when the
Daubechies-5 is applied. It can be observed that the method
detects correctly the constituents S1 and S2 of the cardiac
sounds, that can be confirmed by the ECG signal, used only
as a repair signal.

Fig. 4 illustrates an example obtained from a PCG signal
in the presence of systolic murmur (Aortic Stenoses (AS)). It
can be seen that even in a murmured pathological signal the
proposed method detects correctly the constituents of the
cardiac sounds.

Fig. 3. Detection of the constituents S1 and S2 of  a normal PCG signal

1k =30 and 2k =10-6.

Fig. 4. Detection of the constituents S1 and S2 of a pathological PCG signal

(Aortic Stenoses (AS)). 1k =5 and 2k =10-6.

Table II shows the total number of subjects analyzed in
this study as well as the right-ratio reached by the proposed
method. It can be observed that even in presence of an intense
murmur (M) the method reaches 98% correctness in the
detection of  S1 and S2.

TABLE II
STATISTICAL EVALUATION OF THE METHOD. N(NORMAL); As (AORTIC STENOSES);

AI (AORTIC INSUFFICIENCY); M (MORE THAN ONE PATHOLOGY ASSOCIATED)
Number

of
Subjects Pathology Number

of cycles
Number
of  errors

Right-ratio (%)

10 N 347 2 99.42
3 AE 131 1 99.24
3 AI 163 1 99.39
3 M 115 2 98,26

19 Total 756 6 99.20
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IV. DISCUSSION AND CONCLUSION

The literature shows some works that present methods for
detection of the correct timing of the constituents S1 and S2
of the cardiac sounds, based only on the PCG signal. These
methods are generally focused on the Fourier Analysis and on
the signal envelope of energy. However, these methods do not
present good results when applied to pathological PCG
signals because the presence of strong systolic murmurs [2].

 The present study proposes a new method based on
wavelet analysis for correct detection of S1 and S2 even in
pathological cases. The method presents 98% (Table II) of
correctness in detection of S1and S2, even in cases where a
significant amount of murmur exists.

A natural continuity of the present study would be the
investigation of the sub-events detection inside each cardiac
event S1 and S2, i.e., the timing of their components that are
strictly related to the opening/closing of the cardiac valves.
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